/** * \file geodesic.h * \brief API for the geodesic routines in C * * This an implementation in C of the geodesic algorithms described in * - C. F. F. Karney, * * Algorithms for geodesics, * J. Geodesy 87, 43--55 (2013); * DOI: * 10.1007/s00190-012-0578-z; * addenda: * geod-addenda.html. * . * The principal advantages of these algorithms over previous ones (e.g., * Vincenty, 1975) are * - accurate to round off for |f| < 1/50; * - the solution of the inverse problem is always found; * - differential and integral properties of geodesics are computed. * * The shortest path between two points on the ellipsoid at (\e lat1, \e * lon1) and (\e lat2, \e lon2) is called the geodesic. Its length is * \e s12 and the geodesic from point 1 to point 2 has forward azimuths * \e azi1 and \e azi2 at the two end points. * * Traditionally two geodesic problems are considered: * - the direct problem -- given \e lat1, \e lon1, \e s12, and \e azi1, * determine \e lat2, \e lon2, and \e azi2. This is solved by the function * geod_direct(). * - the inverse problem -- given \e lat1, \e lon1, and \e lat2, \e lon2, * determine \e s12, \e azi1, and \e azi2. This is solved by the function * geod_inverse(). * * The ellipsoid is specified by its equatorial radius \e a (typically in * meters) and flattening \e f. The routines are accurate to round off with * double precision arithmetic provided that |f| < 1/50; for the * WGS84 ellipsoid, the errors are less than 15 nanometers. (Reasonably * accurate results are obtained for |f| < 1/5.) For a prolate * ellipsoid, specify \e f < 0. * * The routines also calculate several other quantities of interest * - \e S12 is the area between the geodesic from point 1 to point 2 and the * equator; i.e., it is the area, measured counter-clockwise, of the * quadrilateral with corners (\e lat1,\e lon1), (0,\e lon1), (0,\e lon2), * and (\e lat2,\e lon2). * - \e m12, the reduced length of the geodesic is defined such that if * the initial azimuth is perturbed by \e dazi1 (radians) then the * second point is displaced by \e m12 \e dazi1 in the direction * perpendicular to the geodesic. On a curved surface the reduced * length obeys a symmetry relation, \e m12 + \e m21 = 0. On a flat * surface, we have \e m12 = \e s12. * - \e M12 and \e M21 are geodesic scales. If two geodesics are * parallel at point 1 and separated by a small distance \e dt, then * they are separated by a distance \e M12 \e dt at point 2. \e M21 * is defined similarly (with the geodesics being parallel to one * another at point 2). On a flat surface, we have \e M12 = \e M21 * = 1. * - \e a12 is the arc length on the auxiliary sphere. This is a * construct for converting the problem to one in spherical * trigonometry. \e a12 is measured in degrees. The spherical arc * length from one equator crossing to the next is always 180°. * * If points 1, 2, and 3 lie on a single geodesic, then the following * addition rules hold: * - \e s13 = \e s12 + \e s23 * - \e a13 = \e a12 + \e a23 * - \e S13 = \e S12 + \e S23 * - \e m13 = \e m12 \e M23 + \e m23 \e M21 * - \e M13 = \e M12 \e M23 − (1 − \e M12 \e M21) \e * m23 / \e m12 * - \e M31 = \e M32 \e M21 − (1 − \e M23 \e M32) \e * m12 / \e m23 * * The shortest distance returned by the solution of the inverse problem is * (obviously) uniquely defined. However, in a few special cases there are * multiple azimuths which yield the same shortest distance. Here is a * catalog of those cases: * - \e lat1 = −\e lat2 (with neither point at a pole). If \e azi1 = \e * azi2, the geodesic is unique. Otherwise there are two geodesics and the * second one is obtained by setting [\e azi1, \e azi2] → [\e azi2, \e * azi1], [\e M12, \e M21] → [\e M21, \e M12], \e S12 → −\e * S12. (This occurs when the longitude difference is near ±180° * for oblate ellipsoids.) * - \e lon2 = \e lon1 ± 180° (with neither point at a pole). If \e * azi1 = 0° or ±180°, the geodesic is unique. Otherwise * there are two geodesics and the second one is obtained by setting [\e * azi1, \e azi2] → [−\e azi1, −\e azi2], \e S12 → * −\e S12. (This occurs when \e lat2 is near −\e lat1 for * prolate ellipsoids.) * - Points 1 and 2 at opposite poles. There are infinitely many geodesics * which can be generated by setting [\e azi1, \e azi2] → [\e azi1, \e * azi2] + [\e d, −\e d], for arbitrary \e d. (For spheres, this * prescription applies when points 1 and 2 are antipodal.) * - \e s12 = 0 (coincident points). There are infinitely many geodesics which * can be generated by setting [\e azi1, \e azi2] → [\e azi1, \e azi2] + * [\e d, \e d], for arbitrary \e d. * * These routines are a simple transcription of the corresponding C++ classes * in GeographicLib. The * "class data" is represented by the structs geod_geodesic, geod_geodesicline, * geod_polygon and pointers to these objects are passed as initial arguments * to the member functions. Most of the internal comments have been retained. * However, in the process of transcription some documentation has been lost * and the documentation for the C++ classes, GeographicLib::Geodesic, * GeographicLib::GeodesicLine, and GeographicLib::PolygonAreaT, should be * consulted. The C++ code remains the "reference implementation". Think * twice about restructuring the internals of the C code since this may make * porting fixes from the C++ code more difficult. * * Copyright (c) Charles Karney (2012-2021) and licensed * under the MIT/X11 License. For more information, see * https://geographiclib.sourceforge.io/ * * This library was distributed with * GeographicLib 1.52. **********************************************************************/ #if !defined(GEODESIC_H) #define GEODESIC_H 1 /** * The major version of the geodesic library. (This tracks the version of * GeographicLib.) **********************************************************************/ #define GEODESIC_VERSION_MAJOR 1 /** * The minor version of the geodesic library. (This tracks the version of * GeographicLib.) **********************************************************************/ #define GEODESIC_VERSION_MINOR 52 /** * The patch level of the geodesic library. (This tracks the version of * GeographicLib.) **********************************************************************/ #define GEODESIC_VERSION_PATCH 0 /** * Pack the version components into a single integer. Users should not rely on * this particular packing of the components of the version number; see the * documentation for GEODESIC_VERSION, below. **********************************************************************/ #define GEODESIC_VERSION_NUM(a,b,c) ((((a) * 10000 + (b)) * 100) + (c)) /** * The version of the geodesic library as a single integer, packed as MMmmmmpp * where MM is the major version, mmmm is the minor version, and pp is the * patch level. Users should not rely on this particular packing of the * components of the version number. Instead they should use a test such as * @code{.c} #if GEODESIC_VERSION >= GEODESIC_VERSION_NUM(1,40,0) ... #endif * @endcode **********************************************************************/ #define GEODESIC_VERSION \ GEODESIC_VERSION_NUM(GEODESIC_VERSION_MAJOR, \ GEODESIC_VERSION_MINOR, \ GEODESIC_VERSION_PATCH) #if !defined(GEOD_DLL) #if defined(_MSC_VER) && defined(PROJ_MSVC_DLL_EXPORT) #define GEOD_DLL __declspec(dllexport) #elif defined(__GNUC__) #define GEOD_DLL __attribute__ ((visibility("default"))) #else #define GEOD_DLL #endif #endif #if defined(PROJ_RENAME_SYMBOLS) #include "proj_symbol_rename.h" #endif #if defined(__cplusplus) extern "C" { #endif /** * The struct containing information about the ellipsoid. This must be * initialized by geod_init() before use. **********************************************************************/ struct geod_geodesic { double a; /**< the equatorial radius */ double f; /**< the flattening */ /**< @cond SKIP */ double f1, e2, ep2, n, b, c2, etol2; double A3x[6], C3x[15], C4x[21]; /**< @endcond */ }; /** * The struct containing information about a single geodesic. This must be * initialized by geod_lineinit(), geod_directline(), geod_gendirectline(), * or geod_inverseline() before use. **********************************************************************/ struct geod_geodesicline { double lat1; /**< the starting latitude */ double lon1; /**< the starting longitude */ double azi1; /**< the starting azimuth */ double a; /**< the equatorial radius */ double f; /**< the flattening */ double salp1; /**< sine of \e azi1 */ double calp1; /**< cosine of \e azi1 */ double a13; /**< arc length to reference point */ double s13; /**< distance to reference point */ /**< @cond SKIP */ double b, c2, f1, salp0, calp0, k2, ssig1, csig1, dn1, stau1, ctau1, somg1, comg1, A1m1, A2m1, A3c, B11, B21, B31, A4, B41; double C1a[6+1], C1pa[6+1], C2a[6+1], C3a[6], C4a[6]; /**< @endcond */ unsigned caps; /**< the capabilities */ }; /** * The struct for accumulating information about a geodesic polygon. This is * used for computing the perimeter and area of a polygon. This must be * initialized by geod_polygon_init() before use. **********************************************************************/ struct geod_polygon { double lat; /**< the current latitude */ double lon; /**< the current longitude */ /**< @cond SKIP */ double lat0; double lon0; double A[2]; double P[2]; int polyline; int crossings; /**< @endcond */ unsigned num; /**< the number of points so far */ }; /** * Initialize a geod_geodesic object. * * @param[out] g a pointer to the object to be initialized. * @param[in] a the equatorial radius (meters). * @param[in] f the flattening. **********************************************************************/ void GEOD_DLL geod_init(struct geod_geodesic* g, double a, double f); /** * Solve the direct geodesic problem. * * @param[in] g a pointer to the geod_geodesic object specifying the * ellipsoid. * @param[in] lat1 latitude of point 1 (degrees). * @param[in] lon1 longitude of point 1 (degrees). * @param[in] azi1 azimuth at point 1 (degrees). * @param[in] s12 distance from point 1 to point 2 (meters); it can be * negative. * @param[out] plat2 pointer to the latitude of point 2 (degrees). * @param[out] plon2 pointer to the longitude of point 2 (degrees). * @param[out] pazi2 pointer to the (forward) azimuth at point 2 (degrees). * * \e g must have been initialized with a call to geod_init(). \e lat1 * should be in the range [−90°, 90°]. The values of \e lon2 * and \e azi2 returned are in the range [−180°, 180°]. Any of * the "return" arguments \e plat2, etc., may be replaced by 0, if you do not * need some quantities computed. * * If either point is at a pole, the azimuth is defined by keeping the * longitude fixed, writing \e lat = ±(90° − ε), and * taking the limit ε → 0+. An arc length greater that 180° * signifies a geodesic which is not a shortest path. (For a prolate * ellipsoid, an additional condition is necessary for a shortest path: the * longitudinal extent must not exceed of 180°.) * * Example, determine the point 10000 km NE of JFK: @code{.c} struct geod_geodesic g; double lat, lon; geod_init(&g, 6378137, 1/298.257223563); geod_direct(&g, 40.64, -73.78, 45.0, 10e6, &lat, &lon, 0); printf("%.5f %.5f\n", lat, lon); @endcode **********************************************************************/ void GEOD_DLL geod_direct(const struct geod_geodesic* g, double lat1, double lon1, double azi1, double s12, double* plat2, double* plon2, double* pazi2); /** * The general direct geodesic problem. * * @param[in] g a pointer to the geod_geodesic object specifying the * ellipsoid. * @param[in] lat1 latitude of point 1 (degrees). * @param[in] lon1 longitude of point 1 (degrees). * @param[in] azi1 azimuth at point 1 (degrees). * @param[in] flags bitor'ed combination of geod_flags(); \e flags & * GEOD_ARCMODE determines the meaning of \e s12_a12 and \e flags & * GEOD_LONG_UNROLL "unrolls" \e lon2. * @param[in] s12_a12 if \e flags & GEOD_ARCMODE is 0, this is the distance * from point 1 to point 2 (meters); otherwise it is the arc length * from point 1 to point 2 (degrees); it can be negative. * @param[out] plat2 pointer to the latitude of point 2 (degrees). * @param[out] plon2 pointer to the longitude of point 2 (degrees). * @param[out] pazi2 pointer to the (forward) azimuth at point 2 (degrees). * @param[out] ps12 pointer to the distance from point 1 to point 2 * (meters). * @param[out] pm12 pointer to the reduced length of geodesic (meters). * @param[out] pM12 pointer to the geodesic scale of point 2 relative to * point 1 (dimensionless). * @param[out] pM21 pointer to the geodesic scale of point 1 relative to * point 2 (dimensionless). * @param[out] pS12 pointer to the area under the geodesic * (meters2). * @return \e a12 arc length from point 1 to point 2 (degrees). * * \e g must have been initialized with a call to geod_init(). \e lat1 * should be in the range [−90°, 90°]. The function value \e * a12 equals \e s12_a12 if \e flags & GEOD_ARCMODE. Any of the "return" * arguments, \e plat2, etc., may be replaced by 0, if you do not need some * quantities computed. * * With \e flags & GEOD_LONG_UNROLL bit set, the longitude is "unrolled" so * that the quantity \e lon2 − \e lon1 indicates how many times and in * what sense the geodesic encircles the ellipsoid. **********************************************************************/ double GEOD_DLL geod_gendirect(const struct geod_geodesic* g, double lat1, double lon1, double azi1, unsigned flags, double s12_a12, double* plat2, double* plon2, double* pazi2, double* ps12, double* pm12, double* pM12, double* pM21, double* pS12); /** * Solve the inverse geodesic problem. * * @param[in] g a pointer to the geod_geodesic object specifying the * ellipsoid. * @param[in] lat1 latitude of point 1 (degrees). * @param[in] lon1 longitude of point 1 (degrees). * @param[in] lat2 latitude of point 2 (degrees). * @param[in] lon2 longitude of point 2 (degrees). * @param[out] ps12 pointer to the distance from point 1 to point 2 * (meters). * @param[out] pazi1 pointer to the azimuth at point 1 (degrees). * @param[out] pazi2 pointer to the (forward) azimuth at point 2 (degrees). * * \e g must have been initialized with a call to geod_init(). \e lat1 and * \e lat2 should be in the range [−90°, 90°]. The values of * \e azi1 and \e azi2 returned are in the range [−180°, 180°]. * Any of the "return" arguments, \e ps12, etc., may be replaced by 0, if you * do not need some quantities computed. * * If either point is at a pole, the azimuth is defined by keeping the * longitude fixed, writing \e lat = ±(90° − ε), and * taking the limit ε → 0+. * * The solution to the inverse problem is found using Newton's method. If * this fails to converge (this is very unlikely in geodetic applications * but does occur for very eccentric ellipsoids), then the bisection method * is used to refine the solution. * * Example, determine the distance between JFK and Singapore Changi Airport: @code{.c} struct geod_geodesic g; double s12; geod_init(&g, 6378137, 1/298.257223563); geod_inverse(&g, 40.64, -73.78, 1.36, 103.99, &s12, 0, 0); printf("%.3f\n", s12); @endcode **********************************************************************/ void GEOD_DLL geod_inverse(const struct geod_geodesic* g, double lat1, double lon1, double lat2, double lon2, double* ps12, double* pazi1, double* pazi2); /** * The general inverse geodesic calculation. * * @param[in] g a pointer to the geod_geodesic object specifying the * ellipsoid. * @param[in] lat1 latitude of point 1 (degrees). * @param[in] lon1 longitude of point 1 (degrees). * @param[in] lat2 latitude of point 2 (degrees). * @param[in] lon2 longitude of point 2 (degrees). * @param[out] ps12 pointer to the distance from point 1 to point 2 * (meters). * @param[out] pazi1 pointer to the azimuth at point 1 (degrees). * @param[out] pazi2 pointer to the (forward) azimuth at point 2 (degrees). * @param[out] pm12 pointer to the reduced length of geodesic (meters). * @param[out] pM12 pointer to the geodesic scale of point 2 relative to * point 1 (dimensionless). * @param[out] pM21 pointer to the geodesic scale of point 1 relative to * point 2 (dimensionless). * @param[out] pS12 pointer to the area under the geodesic * (meters2). * @return \e a12 arc length from point 1 to point 2 (degrees). * * \e g must have been initialized with a call to geod_init(). \e lat1 and * \e lat2 should be in the range [−90°, 90°]. Any of the * "return" arguments \e ps12, etc., may be replaced by 0, if you do not need * some quantities computed. **********************************************************************/ double GEOD_DLL geod_geninverse(const struct geod_geodesic* g, double lat1, double lon1, double lat2, double lon2, double* ps12, double* pazi1, double* pazi2, double* pm12, double* pM12, double* pM21, double* pS12); /** * Initialize a geod_geodesicline object. * * @param[out] l a pointer to the object to be initialized. * @param[in] g a pointer to the geod_geodesic object specifying the * ellipsoid. * @param[in] lat1 latitude of point 1 (degrees). * @param[in] lon1 longitude of point 1 (degrees). * @param[in] azi1 azimuth at point 1 (degrees). * @param[in] caps bitor'ed combination of geod_mask() values specifying the * capabilities the geod_geodesicline object should possess, i.e., which * quantities can be returned in calls to geod_position() and * geod_genposition(). * * \e g must have been initialized with a call to geod_init(). \e lat1 * should be in the range [−90°, 90°]. * * The geod_mask values are [see geod_mask()]: * - \e caps |= GEOD_LATITUDE for the latitude \e lat2; this is * added automatically, * - \e caps |= GEOD_LONGITUDE for the latitude \e lon2, * - \e caps |= GEOD_AZIMUTH for the latitude \e azi2; this is * added automatically, * - \e caps |= GEOD_DISTANCE for the distance \e s12, * - \e caps |= GEOD_REDUCEDLENGTH for the reduced length \e m12, * - \e caps |= GEOD_GEODESICSCALE for the geodesic scales \e M12 * and \e M21, * - \e caps |= GEOD_AREA for the area \e S12, * - \e caps |= GEOD_DISTANCE_IN permits the length of the * geodesic to be given in terms of \e s12; without this capability the * length can only be specified in terms of arc length. * . * A value of \e caps = 0 is treated as GEOD_LATITUDE | GEOD_LONGITUDE | * GEOD_AZIMUTH | GEOD_DISTANCE_IN (to support the solution of the "standard" * direct problem). * * When initialized by this function, point 3 is undefined (l->s13 = l->a13 = * NaN). **********************************************************************/ void GEOD_DLL geod_lineinit(struct geod_geodesicline* l, const struct geod_geodesic* g, double lat1, double lon1, double azi1, unsigned caps); /** * Initialize a geod_geodesicline object in terms of the direct geodesic * problem. * * @param[out] l a pointer to the object to be initialized. * @param[in] g a pointer to the geod_geodesic object specifying the * ellipsoid. * @param[in] lat1 latitude of point 1 (degrees). * @param[in] lon1 longitude of point 1 (degrees). * @param[in] azi1 azimuth at point 1 (degrees). * @param[in] s12 distance from point 1 to point 2 (meters); it can be * negative. * @param[in] caps bitor'ed combination of geod_mask() values specifying the * capabilities the geod_geodesicline object should possess, i.e., which * quantities can be returned in calls to geod_position() and * geod_genposition(). * * This function sets point 3 of the geod_geodesicline to correspond to point * 2 of the direct geodesic problem. See geod_lineinit() for more * information. **********************************************************************/ void GEOD_DLL geod_directline(struct geod_geodesicline* l, const struct geod_geodesic* g, double lat1, double lon1, double azi1, double s12, unsigned caps); /** * Initialize a geod_geodesicline object in terms of the direct geodesic * problem specified in terms of either distance or arc length. * * @param[out] l a pointer to the object to be initialized. * @param[in] g a pointer to the geod_geodesic object specifying the * ellipsoid. * @param[in] lat1 latitude of point 1 (degrees). * @param[in] lon1 longitude of point 1 (degrees). * @param[in] azi1 azimuth at point 1 (degrees). * @param[in] flags either GEOD_NOFLAGS or GEOD_ARCMODE to determining the * meaning of the \e s12_a12. * @param[in] s12_a12 if \e flags = GEOD_NOFLAGS, this is the distance * from point 1 to point 2 (meters); if \e flags = GEOD_ARCMODE, it is * the arc length from point 1 to point 2 (degrees); it can be * negative. * @param[in] caps bitor'ed combination of geod_mask() values specifying the * capabilities the geod_geodesicline object should possess, i.e., which * quantities can be returned in calls to geod_position() and * geod_genposition(). * * This function sets point 3 of the geod_geodesicline to correspond to point * 2 of the direct geodesic problem. See geod_lineinit() for more * information. **********************************************************************/ void GEOD_DLL geod_gendirectline(struct geod_geodesicline* l, const struct geod_geodesic* g, double lat1, double lon1, double azi1, unsigned flags, double s12_a12, unsigned caps); /** * Initialize a geod_geodesicline object in terms of the inverse geodesic * problem. * * @param[out] l a pointer to the object to be initialized. * @param[in] g a pointer to the geod_geodesic object specifying the * ellipsoid. * @param[in] lat1 latitude of point 1 (degrees). * @param[in] lon1 longitude of point 1 (degrees). * @param[in] lat2 latitude of point 2 (degrees). * @param[in] lon2 longitude of point 2 (degrees). * @param[in] caps bitor'ed combination of geod_mask() values specifying the * capabilities the geod_geodesicline object should possess, i.e., which * quantities can be returned in calls to geod_position() and * geod_genposition(). * * This function sets point 3 of the geod_geodesicline to correspond to point * 2 of the inverse geodesic problem. See geod_lineinit() for more * information. **********************************************************************/ void GEOD_DLL geod_inverseline(struct geod_geodesicline* l, const struct geod_geodesic* g, double lat1, double lon1, double lat2, double lon2, unsigned caps); /** * Compute the position along a geod_geodesicline. * * @param[in] l a pointer to the geod_geodesicline object specifying the * geodesic line. * @param[in] s12 distance from point 1 to point 2 (meters); it can be * negative. * @param[out] plat2 pointer to the latitude of point 2 (degrees). * @param[out] plon2 pointer to the longitude of point 2 (degrees); requires * that \e l was initialized with \e caps |= GEOD_LONGITUDE. * @param[out] pazi2 pointer to the (forward) azimuth at point 2 (degrees). * * \e l must have been initialized with a call, e.g., to geod_lineinit(), * with \e caps |= GEOD_DISTANCE_IN (or \e caps = 0). The values of \e lon2 * and \e azi2 returned are in the range [−180°, 180°]. Any of * the "return" arguments \e plat2, etc., may be replaced by 0, if you do not * need some quantities computed. * * Example, compute way points between JFK and Singapore Changi Airport * the "obvious" way using geod_direct(): @code{.c} struct geod_geodesic g; double s12, azi1, lat[101],lon[101]; int i; geod_init(&g, 6378137, 1/298.257223563); geod_inverse(&g, 40.64, -73.78, 1.36, 103.99, &s12, &azi1, 0); for (i = 0; i < 101; ++i) { geod_direct(&g, 40.64, -73.78, azi1, i * s12 * 0.01, lat + i, lon + i, 0); printf("%.5f %.5f\n", lat[i], lon[i]); } @endcode * A faster way using geod_position(): @code{.c} struct geod_geodesic g; struct geod_geodesicline l; double lat[101],lon[101]; int i; geod_init(&g, 6378137, 1/298.257223563); geod_inverseline(&l, &g, 40.64, -73.78, 1.36, 103.99, 0); for (i = 0; i <= 100; ++i) { geod_position(&l, i * l.s13 * 0.01, lat + i, lon + i, 0); printf("%.5f %.5f\n", lat[i], lon[i]); } @endcode **********************************************************************/ void GEOD_DLL geod_position(const struct geod_geodesicline* l, double s12, double* plat2, double* plon2, double* pazi2); /** * The general position function. * * @param[in] l a pointer to the geod_geodesicline object specifying the * geodesic line. * @param[in] flags bitor'ed combination of geod_flags(); \e flags & * GEOD_ARCMODE determines the meaning of \e s12_a12 and \e flags & * GEOD_LONG_UNROLL "unrolls" \e lon2; if \e flags & GEOD_ARCMODE is 0, * then \e l must have been initialized with \e caps |= GEOD_DISTANCE_IN. * @param[in] s12_a12 if \e flags & GEOD_ARCMODE is 0, this is the * distance from point 1 to point 2 (meters); otherwise it is the * arc length from point 1 to point 2 (degrees); it can be * negative. * @param[out] plat2 pointer to the latitude of point 2 (degrees). * @param[out] plon2 pointer to the longitude of point 2 (degrees); requires * that \e l was initialized with \e caps |= GEOD_LONGITUDE. * @param[out] pazi2 pointer to the (forward) azimuth at point 2 (degrees). * @param[out] ps12 pointer to the distance from point 1 to point 2 * (meters); requires that \e l was initialized with \e caps |= * GEOD_DISTANCE. * @param[out] pm12 pointer to the reduced length of geodesic (meters); * requires that \e l was initialized with \e caps |= GEOD_REDUCEDLENGTH. * @param[out] pM12 pointer to the geodesic scale of point 2 relative to * point 1 (dimensionless); requires that \e l was initialized with \e caps * |= GEOD_GEODESICSCALE. * @param[out] pM21 pointer to the geodesic scale of point 1 relative to * point 2 (dimensionless); requires that \e l was initialized with \e caps * |= GEOD_GEODESICSCALE. * @param[out] pS12 pointer to the area under the geodesic * (meters2); requires that \e l was initialized with \e caps |= * GEOD_AREA. * @return \e a12 arc length from point 1 to point 2 (degrees). * * \e l must have been initialized with a call to geod_lineinit() with \e * caps |= GEOD_DISTANCE_IN. The value \e azi2 returned is in the range * [−180°, 180°]. Any of the "return" arguments \e plat2, * etc., may be replaced by 0, if you do not need some quantities * computed. Requesting a value which \e l is not capable of computing * is not an error; the corresponding argument will not be altered. * * With \e flags & GEOD_LONG_UNROLL bit set, the longitude is "unrolled" so * that the quantity \e lon2 − \e lon1 indicates how many times and in * what sense the geodesic encircles the ellipsoid. * * Example, compute way points between JFK and Singapore Changi Airport using * geod_genposition(). In this example, the points are evenly space in arc * length (and so only approximately equally spaced in distance). This is * faster than using geod_position() and would be appropriate if drawing the * path on a map. @code{.c} struct geod_geodesic g; struct geod_geodesicline l; double lat[101], lon[101]; int i; geod_init(&g, 6378137, 1/298.257223563); geod_inverseline(&l, &g, 40.64, -73.78, 1.36, 103.99, GEOD_LATITUDE | GEOD_LONGITUDE); for (i = 0; i <= 100; ++i) { geod_genposition(&l, GEOD_ARCMODE, i * l.a13 * 0.01, lat + i, lon + i, 0, 0, 0, 0, 0, 0); printf("%.5f %.5f\n", lat[i], lon[i]); } @endcode **********************************************************************/ double GEOD_DLL geod_genposition(const struct geod_geodesicline* l, unsigned flags, double s12_a12, double* plat2, double* plon2, double* pazi2, double* ps12, double* pm12, double* pM12, double* pM21, double* pS12); /** * Specify position of point 3 in terms of distance. * * @param[in,out] l a pointer to the geod_geodesicline object. * @param[in] s13 the distance from point 1 to point 3 (meters); it * can be negative. * * This is only useful if the geod_geodesicline object has been constructed * with \e caps |= GEOD_DISTANCE_IN. **********************************************************************/ void GEOD_DLL geod_setdistance(struct geod_geodesicline* l, double s13); /** * Specify position of point 3 in terms of either distance or arc length. * * @param[in,out] l a pointer to the geod_geodesicline object. * @param[in] flags either GEOD_NOFLAGS or GEOD_ARCMODE to determining the * meaning of the \e s13_a13. * @param[in] s13_a13 if \e flags = GEOD_NOFLAGS, this is the distance * from point 1 to point 3 (meters); if \e flags = GEOD_ARCMODE, it is * the arc length from point 1 to point 3 (degrees); it can be * negative. * * If flags = GEOD_NOFLAGS, this calls geod_setdistance(). If flags = * GEOD_ARCMODE, the \e s13 is only set if the geod_geodesicline object has * been constructed with \e caps |= GEOD_DISTANCE. **********************************************************************/ void GEOD_DLL geod_gensetdistance(struct geod_geodesicline* l, unsigned flags, double s13_a13); /** * Initialize a geod_polygon object. * * @param[out] p a pointer to the object to be initialized. * @param[in] polylinep non-zero if a polyline instead of a polygon. * * If \e polylinep is zero, then the sequence of vertices and edges added by * geod_polygon_addpoint() and geod_polygon_addedge() define a polygon and * the perimeter and area are returned by geod_polygon_compute(). If \e * polylinep is non-zero, then the vertices and edges define a polyline and * only the perimeter is returned by geod_polygon_compute(). * * The area and perimeter are accumulated at two times the standard floating * point precision to guard against the loss of accuracy with many-sided * polygons. At any point you can ask for the perimeter and area so far. * * An example of the use of this function is given in the documentation for * geod_polygon_compute(). **********************************************************************/ void GEOD_DLL geod_polygon_init(struct geod_polygon* p, int polylinep); /** * Clear the polygon, allowing a new polygon to be started. * * @param[in,out] p a pointer to the object to be cleared. **********************************************************************/ void GEOD_DLL geod_polygon_clear(struct geod_polygon* p); /** * Add a point to the polygon or polyline. * * @param[in] g a pointer to the geod_geodesic object specifying the * ellipsoid. * @param[in,out] p a pointer to the geod_polygon object specifying the * polygon. * @param[in] lat the latitude of the point (degrees). * @param[in] lon the longitude of the point (degrees). * * \e g and \e p must have been initialized with calls to geod_init() and * geod_polygon_init(), respectively. The same \e g must be used for all the * points and edges in a polygon. \e lat should be in the range * [−90°, 90°]. * * An example of the use of this function is given in the documentation for * geod_polygon_compute(). **********************************************************************/ void GEOD_DLL geod_polygon_addpoint(const struct geod_geodesic* g, struct geod_polygon* p, double lat, double lon); /** * Add an edge to the polygon or polyline. * * @param[in] g a pointer to the geod_geodesic object specifying the * ellipsoid. * @param[in,out] p a pointer to the geod_polygon object specifying the * polygon. * @param[in] azi azimuth at current point (degrees). * @param[in] s distance from current point to next point (meters). * * \e g and \e p must have been initialized with calls to geod_init() and * geod_polygon_init(), respectively. The same \e g must be used for all the * points and edges in a polygon. This does nothing if no points have been * added yet. The \e lat and \e lon fields of \e p give the location of the * new vertex. **********************************************************************/ void GEOD_DLL geod_polygon_addedge(const struct geod_geodesic* g, struct geod_polygon* p, double azi, double s); /** * Return the results for a polygon. * * @param[in] g a pointer to the geod_geodesic object specifying the * ellipsoid. * @param[in] p a pointer to the geod_polygon object specifying the polygon. * @param[in] reverse if non-zero then clockwise (instead of * counter-clockwise) traversal counts as a positive area. * @param[in] sign if non-zero then return a signed result for the area if * the polygon is traversed in the "wrong" direction instead of returning * the area for the rest of the earth. * @param[out] pA pointer to the area of the polygon (meters2); * only set if \e polyline is non-zero in the call to geod_polygon_init(). * @param[out] pP pointer to the perimeter of the polygon or length of the * polyline (meters). * @return the number of points. * * The area and perimeter are accumulated at two times the standard floating * point precision to guard against the loss of accuracy with many-sided * polygons. Arbitrarily complex polygons are allowed. In the case of * self-intersecting polygons the area is accumulated "algebraically", e.g., * the areas of the 2 loops in a figure-8 polygon will partially cancel. * There's no need to "close" the polygon by repeating the first vertex. Set * \e pA or \e pP to zero, if you do not want the corresponding quantity * returned. * * More points can be added to the polygon after this call. * * Example, compute the perimeter and area of the geodesic triangle with * vertices (0°N,0°E), (0°N,90°E), (90°N,0°E). @code{.c} double A, P; int n; struct geod_geodesic g; struct geod_polygon p; geod_init(&g, 6378137, 1/298.257223563); geod_polygon_init(&p, 0); geod_polygon_addpoint(&g, &p, 0, 0); geod_polygon_addpoint(&g, &p, 0, 90); geod_polygon_addpoint(&g, &p, 90, 0); n = geod_polygon_compute(&g, &p, 0, 1, &A, &P); printf("%d %.8f %.3f\n", n, P, A); @endcode **********************************************************************/ unsigned GEOD_DLL geod_polygon_compute(const struct geod_geodesic* g, const struct geod_polygon* p, int reverse, int sign, double* pA, double* pP); /** * Return the results assuming a tentative final test point is added; * however, the data for the test point is not saved. This lets you report a * running result for the perimeter and area as the user moves the mouse * cursor. Ordinary floating point arithmetic is used to accumulate the data * for the test point; thus the area and perimeter returned are less accurate * than if geod_polygon_addpoint() and geod_polygon_compute() are used. * * @param[in] g a pointer to the geod_geodesic object specifying the * ellipsoid. * @param[in] p a pointer to the geod_polygon object specifying the polygon. * @param[in] lat the latitude of the test point (degrees). * @param[in] lon the longitude of the test point (degrees). * @param[in] reverse if non-zero then clockwise (instead of * counter-clockwise) traversal counts as a positive area. * @param[in] sign if non-zero then return a signed result for the area if * the polygon is traversed in the "wrong" direction instead of returning * the area for the rest of the earth. * @param[out] pA pointer to the area of the polygon (meters2); * only set if \e polyline is non-zero in the call to geod_polygon_init(). * @param[out] pP pointer to the perimeter of the polygon or length of the * polyline (meters). * @return the number of points. * * \e lat should be in the range [−90°, 90°]. **********************************************************************/ unsigned GEOD_DLL geod_polygon_testpoint(const struct geod_geodesic* g, const struct geod_polygon* p, double lat, double lon, int reverse, int sign, double* pA, double* pP); /** * Return the results assuming a tentative final test point is added via an * azimuth and distance; however, the data for the test point is not saved. * This lets you report a running result for the perimeter and area as the * user moves the mouse cursor. Ordinary floating point arithmetic is used * to accumulate the data for the test point; thus the area and perimeter * returned are less accurate than if geod_polygon_addedge() and * geod_polygon_compute() are used. * * @param[in] g a pointer to the geod_geodesic object specifying the * ellipsoid. * @param[in] p a pointer to the geod_polygon object specifying the polygon. * @param[in] azi azimuth at current point (degrees). * @param[in] s distance from current point to final test point (meters). * @param[in] reverse if non-zero then clockwise (instead of * counter-clockwise) traversal counts as a positive area. * @param[in] sign if non-zero then return a signed result for the area if * the polygon is traversed in the "wrong" direction instead of returning * the area for the rest of the earth. * @param[out] pA pointer to the area of the polygon (meters2); * only set if \e polyline is non-zero in the call to geod_polygon_init(). * @param[out] pP pointer to the perimeter of the polygon or length of the * polyline (meters). * @return the number of points. **********************************************************************/ unsigned GEOD_DLL geod_polygon_testedge(const struct geod_geodesic* g, const struct geod_polygon* p, double azi, double s, int reverse, int sign, double* pA, double* pP); /** * A simple interface for computing the area of a geodesic polygon. * * @param[in] g a pointer to the geod_geodesic object specifying the * ellipsoid. * @param[in] lats an array of latitudes of the polygon vertices (degrees). * @param[in] lons an array of longitudes of the polygon vertices (degrees). * @param[in] n the number of vertices. * @param[out] pA pointer to the area of the polygon (meters2). * @param[out] pP pointer to the perimeter of the polygon (meters). * * \e lats should be in the range [−90°, 90°]. * * Arbitrarily complex polygons are allowed. In the case self-intersecting * of polygons the area is accumulated "algebraically", e.g., the areas of * the 2 loops in a figure-8 polygon will partially cancel. There's no need * to "close" the polygon by repeating the first vertex. The area returned * is signed with counter-clockwise traversal being treated as positive. * * Example, compute the area of Antarctica: @code{.c} double lats[] = {-72.9, -71.9, -74.9, -74.3, -77.5, -77.4, -71.7, -65.9, -65.7, -66.6, -66.9, -69.8, -70.0, -71.0, -77.3, -77.9, -74.7}, lons[] = {-74, -102, -102, -131, -163, 163, 172, 140, 113, 88, 59, 25, -4, -14, -33, -46, -61}; struct geod_geodesic g; double A, P; geod_init(&g, 6378137, 1/298.257223563); geod_polygonarea(&g, lats, lons, (sizeof lats) / (sizeof lats[0]), &A, &P); printf("%.0f %.2f\n", A, P); @endcode **********************************************************************/ void GEOD_DLL geod_polygonarea(const struct geod_geodesic* g, double lats[], double lons[], int n, double* pA, double* pP); /** * mask values for the \e caps argument to geod_lineinit(). **********************************************************************/ enum geod_mask { GEOD_NONE = 0U, /**< Calculate nothing */ GEOD_LATITUDE = 1U<<7 | 0U, /**< Calculate latitude */ GEOD_LONGITUDE = 1U<<8 | 1U<<3, /**< Calculate longitude */ GEOD_AZIMUTH = 1U<<9 | 0U, /**< Calculate azimuth */ GEOD_DISTANCE = 1U<<10 | 1U<<0, /**< Calculate distance */ GEOD_DISTANCE_IN = 1U<<11 | 1U<<0 | 1U<<1,/**< Allow distance as input */ GEOD_REDUCEDLENGTH= 1U<<12 | 1U<<0 | 1U<<2,/**< Calculate reduced length */ GEOD_GEODESICSCALE= 1U<<13 | 1U<<0 | 1U<<2,/**< Calculate geodesic scale */ GEOD_AREA = 1U<<14 | 1U<<4, /**< Calculate reduced length */ GEOD_ALL = 0x7F80U| 0x1FU /**< Calculate everything */ }; /** * flag values for the \e flags argument to geod_gendirect() and * geod_genposition() **********************************************************************/ enum geod_flags { GEOD_NOFLAGS = 0U, /**< No flags */ GEOD_ARCMODE = 1U<<0, /**< Position given in terms of arc distance */ GEOD_LONG_UNROLL = 1U<<15 /**< Unroll the longitude */ }; #if defined(__cplusplus) } #endif #endif